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Cooperation enhanced by the difference between interaction and learning neighborhoods
for evolutionary spatial prisoner’s dilemma games
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We study an evolutionary prisoner’s dilemma game with two layered graphs, where the lower layer is the
physical infrastructure on which the interactions are taking place and the upper layer represents the connections
for the strategy adoption (learning) mechanism. This system is investigated by means of Monte Carlo simu-
lations and an extended pair-approximation method. We consider the average density of cooperators in the
stationary state for a fixed interaction graph, while varying the number of edges in the learning graph. Accord-
ing to the Monte Carlo simulations, the cooperation is modified substantially in a way resembling a coherence-
resonance-like behavior when the number of learning edges is increased. This behavior is reproduced by the

analytical results.
DOI: 10.1103/PhysRevE.75.041114

I. INTRODUCTION

Cooperation can be found in many places in the realistic
world, from biological systems to economic and social sys-
tems [1]. An altruistic action, which benefits others at the
expense of one’s own investment, appears to contradict our
understanding of natural selection controlled by selfish indi-
vidual behaviors. Thus understanding the conditions for the
emergence and maintenance of cooperative behavior among
unrelated and selfish individuals becomes a central issue in
evolutionary biology [2]. In the investigation of this problem
the most popular framework is game theory together with its
extensions involving evolutionary context [3,4]. The prison-
er’s dilemma (PD), a two-person game in which the players
can choose either cooperation (C) or defection (D), is a com-
mon paradigm for studying the evolution of cooperation
[5,6]. In the traditional version of the PD game, two inter-
acting players are offered a certain payoff, the reward R, for
mutual cooperation, and a lower payoff, the punishment P,
for mutual defection. If one player cooperates while the other
defects, then the cooperator gets the lowest sucker’s payoff
S, while the defector gains the highest payoff, the temptation
to defect, 7. Thus we obtain 7>R>P>S. It is easy to see
that defection is the better choice irrespective of the oppo-
nent’s selection. For this reason, defection is the only evolu-
tionarily stable strategy in fully mixed populations of C and
D strategies [3].

Since cooperation is abundant and robust in nature, con-
siderable efforts have been concentrated on exploration of
the origin and persistence of cooperation. During the last
decades, five rules, namely, kin selection [7], direct reciproc-
ity [5], indirect reciprocity [8], network (or spatial) reciproc-
ity [9-11], and group selection [12], have been found to ben-
efit the evolution of cooperation in biological and ecological
systems as well as within human societies (for a recent re-
view, see [13] and references therein). In realistic systems,
most interactions among elements are spatially localized,
which makes spatial or graph models more meaningful. Un-
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like the other four rules, spatial games (i.e., network reci-
procity) can lead to cooperation in the absence of any stra-
tegic complexity [9-11,14] (for a recent review of
evolutionary games on graphs, see [15]). In spatial evolu-
tionary PD games, the cooperators can survive by forming a
large compact cluster, which minimizes the exploitation by
defectors. Along the boundary, cooperators can outweigh
their losses against defectors by gains from interactions
within the cluster [14,16,17].

In spatial models [10,11,14,16,17], the players occupying
the vertices of a graph can follow one of the two pure strat-
egies (C or D), and collect payoffs from their neighbors by
playing PD games. Sometimes the players are allowed to
modify their strategies according to an evolutionary rule de-
pendent on the local payoff distribution. To describe real
systems we can introduce two different graphs [13]. The “in-
teraction graph” determines who plays with whom. The “re-
placement graph” (or learning graph) determines who com-
petes with whom for reproduction, which can be genetic or
cultural. To our knowledge, in most of the existing works the
interaction and replacement graphs are assumed to be iden-
tical. The different roles of these graphs raises a natural ques-
tion: How is cooperation affected when the interaction and
replacement graphs are different? Ifti et al. [18] have studied
the continuous PD game when the interaction neighborhood
(IN) and learning neighborhood (LN) are different. In the
lattice topology, it was observed that when the neighborhood
sizes for “interacting” and “learning” differ by more than
0.5, cooperation is not sustainable [18]. Now we wish to
study what happens if the players can follow only one of the
two pure strategies and the LN for the individuals is inho-
mogeneous.

In this paper, we address these problems by considering
an evolutionary PD game on two-layered graphs. The lower
layer is the physical infrastructure on which the interactions
are taking place (interaction layer), and the upper layer rep-
resents the information flows (learning or imitation layer).
For the sake of simplicity, we study the case where the lower
interaction layer is a square lattice. Generally, one can expect
that the size of the LN is larger than that of the IN, which can
be understood as follows. After each round of the game, not
only do the interacting players exchange information about
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their own payoffs and strategies, they also share information
about their neighbors and their neighbors’ neighbors. To ex-
plore the influence of the difference between the interaction
and learning graphs on the evolution of cooperation, we keep
the IN fixed and vary the size of the LN. In what follows two
types of models are systematically investigated. In the first
case (model I), we simply increase the size of the LN for all
the players at the same level. In the second case (model II),
we endow the players with heterogeneous abilities to obtain
information. i.e., some players have a larger size of LN than
others.

II. MODEL

We consider the PD game with pure strategies: either C or
D. On the interaction layer (a square lattice), each player
plays PD games with its four neighbors and collects a payoff
determined by the strategy-dependent payoff. The total pay-
off of a certain player is the sum over all interactions. We
assume that a cooperator pays a cost ¢ for another individual
to receive a benefit b(b>c), and a defector pays no cost and
does not distribute any benefits. Thus the reward for mutual
cooperation is R=b—c, the sucker’s payoff S=-c, the pun-
ishment for mutual defection is P=0, and the temptation to
defect is T=b. Following [17], the payoffs are rescaled such
that R=1, T=1+r, S=—r, and P=0, where r=c/(b—c) de-
notes the ratio of the costs of cooperation to the net benefits
of cooperation.

After each round of the game, the players are allowed to
inspect their learning neighbors’ payoffs and strategies, and,
according to the comparison, determine which of their strat-
egies to adopt in the next round. Following previous studies
[14,15,17,19-22], the evolution of the present system is gov-
erned by the adoption of strategy by a randomly chosen
player i and one of its learning neighbors, j; namely, the
player i will adopt the learning neighbor’s strategy with a
probability dependent on the payoff difference (U;~U,) as

1
W= ,
1+ eXp[(Ul' - U])/K]

(1)

where « characterizes the noise introduced to permit irratio-
nal choices. k=0 and k— o0 denote the completely determin-
istic and completely random selection of the neighbor’s strat-
egy, respectively; while for any finite positive values «
incorporates the uncertainties in the strategy adoption, i.e.,
the better one’s strategy is readily adopted, but there is a
small probability to select the worse one’s. The effect of
noise « on the stationary density of cooperators in the spatial
PD game has been studied in detail in Refs. [20,22]. Since
this issue goes beyond the purpose of the present work, in all
our following studies, we simply fix the value of « to be «
=0.1.

In both models I and II, the lower interaction graph is a
square lattice with periodic boundary conditions and of size
N=200X200. For model I, we denote the size of the LN of
the players by d, where d=1,2,... indicate, respectively, that
each player can learn (or get payoff and strategy information
after each round) from their nearest neighbors, nearest and
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next-nearest neighbors, and so on. For model II, the upper
learning graph is a scale-free network embedded on the un-
derlying square lattice, which can be constructed according
to the following steps, associated with the lattice embedded
scale-free network (LESFN) model [23]. For each site of the
underlying interaction graph, a prescribed degree k is as-
signed taken from a scale-free distribution P(k)~k~7, k
€[4,N). A node (say i, with degree k;) is picked out ran-
domly and connected to its closest neighbors until its degree
quota k; is realized or until all sites up to a distance r(k;)
=min(Ak;, VN) have been explored, where A is the territory
parameter [23] (in the present work, we set A=10). Duplicate
connections are avoided. This process is repeated for all sites
of the underlying lattice [24].

III. RESULTS

First, we study the two models by Monte Carlo (MC)
simulations started from a random initial distribution of C
and D strategies. By varying the value of r, both asynchro-
nous and synchronous strategy updating are implemented for
model I, and only synchronous for model II. The total sam-
pling times are 16 000 MC steps and up to 24 000 for model
IT when y<<2.0. The stationary state is characterized by the
average density of cooperators p. calculated by averaging
over the last 4000 steps when the values of d and 7y are
varied systematically. All the simulation data shown in Figs.
1-3 result from an average over either ten realizations of
independent initial strategy configurations (for model I) or
ten realizations of the learning graphs (for model II).

Let us first discuss the MC results obtained for model 1.
The dependence of p. on r in the stationary state for differ-
ent sizes of LN, d, is illustrated in Figs. 1(a) and 1(b). For
d=1, i.e., when the IN and LN are identical, and with asyn-
chronous strategy updating, we recover the results of [17]:
cooperators persist at substantial levels if r is sufficiently
small [Fig. 1(a)]. Synchronous strategy updating gives rise to
a smaller threshold of r., beyond which cooperators vanish
[Fig. 1(b)]. Tt is interesting that for d=2, i.e., besides its
nearest neighbors a player can also learn from its next-
nearest neighbors, both asynchronous and synchronous strat-
egy updating lead to qualitatively as well as quantitatively
the same stationary density of p.. For even larger sizes of
d=3 and 4, though the qualitative behaviors are similar, their
quantitative properties are distinct [somewhat greater values
of the threshold r.. in Fig. 1(b) for synchronous dynamics]. In
particular, for d — o, which corresponds to the case that each
player can learn from the whole population, cooperators can-
not persist in the system for any finite positive values of r
when updating asynchronously, whereas they can maintain at
considerable levels if r is very small when updating synchro-
nously.

In addition to the above points, it is worth pointing out
that, when the LN is larger than the IN, e.g., d=2,3, and 4,
there arise two absorbing states (all C and all D, respec-
tively) separated by an active state (coexistence of C and D)
over the range of r, i.e., cooperators can “wipe out” defectors
or dominate in the system if the players are allowed to get
payoff and strategy information from neighbors further away
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FIG. 1. Average density of cooperators, pc, as a function of r for
different sizes of the LN on square lattices with asynchronous (a)
and synchronous (b) strategy updating. Predictions of p. by the pair
approximation are shown in (c). The cases d=1,2,3,4 correspond
to, respectively, the conditions that the learning neighborhoods of
the players include their nearest neighbors, nearest and next-nearest
neighbors, and so on, while d=% means that each player can learn
from the whole population.

than just interacting neighbors only. This is to say, coopera-
tion is promoted due to the difference between the IN and
LN. Figures 1(a) and 1(b) illustrate clearly the remarkable
enhancement appearing in the case of d=2 for both synchro-
nous and asynchronous dynamics. For synchronous strategy
updating, however, as long as the size of the LN is larger
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FIG. 2. Average density of cooperators, pc, as a function of r on
square lattices with synchronous strategy updating, where the learn-
ing networks are the LESFNs built on the underlying square lattices
with different decay exponents 7. For the sake of comparison, the
case that each player can learn from the whole population is also
shown by solid stars.

than that of the IN, the cooperative behavior is always en-
hanced to some extent as compared to the case of d=1. For
asynchronous strategy updating, however, the promotion of
cooperation is only realized in a very small range of r when
d>?2, and this range decreases with increasing d and van-
ishes in the limit of d—ce.

The mean-field approximation predicts p-=0 for any val-
ues of r>0 [15,17,20]. The nonzero values of p. (dependent
on r) cannot be described by the mean-field approach. To
characterize the evolution of p., the more sophisticated pair
approximation provides an analytically accessible way to de-
termine the corrections from spatial structural correlation of
the players. Instead of the equilibrium density of C and D,
the pair approximation considers the frequency of strategy
pairs C-D (see the Appendix of Refs. [15,17] or the Supple-
mentary Information of Ref. [16] for details). However, these
existing methods are prepared for the condition where the
interaction and learning graphs are identical. When these two
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FIG. 3. Average density of cooperators, pc, as a function of the
decay exponent y of the LESFNs for two special values of r
=0.017 and 0.023.
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graphs are different, we should make some modifications to
the original approach.

In the present work, we use an extended pair approxima-
tion (see the Appendix ) to calculate the density p. by vary-
ing the values of r and d for model I. The results are shown
in Fig. 1(c). The extended pair approximation correctly pre-
dicts the tendencies of the evolution of p., especially for d
=2, but significantly underestimates the benefits of spatial
structural effects and the larger size of the LN (than the IN)
at low r, whereas it overestimates those at high r. Despite
this point, it verifies the above result obtained by MC simu-
lation, i.e., the most remarkable enhancement of cooperation
takes place at d=2. For d=3, it fits the synchronous results
better than the asynchronous ones [according to the magni-
tude relationship between the curve for d=3 and that for d
=1 in Figs. 1(a)-1(c)], despite the fact that the pair approxi-
mation is based on the assumption of continuous time, and
hence on asynchronous updating. In particular, for d=4, it
correctly predicts the occurrence of an intersection with the
curve for d=1 as previously found by MC simulation in Fig.
1(a). For d—o°, it once again correctly forecasts the extinc-
tion of cooperators (p-=1/2 for r=0, and p-=0 for other
any finite positive values of r).

We now focus our attention on the influence of the het-
erogeneous LN on the evolution of cooperation. The MC
results obtained for model I with different values of vy are
summarized in Fig. 2. The case y— is equivalent to the
case d=1 studied in model I. With decreasing 7 (yielding an
increase in the average degree of the LN), the cooperative
level increases gradually until y=1.7+0.2, where p. reaches
its maximum, and then it gradually decreases as 7y goes to
zero. In finite-size systems for vanishing vy in model II, the
evolutionary results are expected to tend toward the (unat-
tainable) case of d—o in model I, since on average the
players have more and more learning neighbors. For the sake
of clarity, in Fig. 2 we also show the result for d— ob-
tained in model I by solid stars.

Note that, just as was found in model I, if the LN and IN
are different, then cooperation is promoted, and the maxi-
mum enhancement is achieved at a moderate level of the
available information of the LN. Too little information as
well as too much information favors defection. To support
this point, we have also studied the density of cooperators as
a function of the size of the LN of the players (characterized
by 7) for two special values of r=0.017 and 0.023. The MC
results are plotted in Fig. 3. We can clearly observe that there
exactly arise peak values of p. in the middle range of y for
both r, analogous to the so-called coherence resonance [25].
In recent research work, many mechanisms are described
that can lead to this coherence resonance phenomenon in
studying the PD game. For example, in Ref. [25] additive
noise on the classical replicator dynamics can enhance the
average payoff of the population in a resonancelike manner.
By introducing random disorder in the payoff matrix, Perc
[26] found a resonancelike behavior of the density of the
cooperators which reaches its maximum at an intermediate
disorder. On static complex networks, Tang et al. [27] ob-
tained the result that the maximum cooperation level occurs
at intermediate average degree. Ren er al. [28] studied the
effects of both topological randomness in individual relation-
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ships and dynamical randomness in decision making on the
evolution of cooperation, and found that there exists an op-
timal moderate level of randomness, which can induce the
highest level of cooperation. Our result presented here, i.e.,
enhancing cooperation by increase of the LN, which re-
sembles a coherence-resonancelike behavior, provides a dif-
ferent example of this dynamical phenomenon. It will enrich
our knowledge of the evolution of cooperation in nature.

More recently, Ohtsuki et al. [29] studied the evolution of
cooperation in the evolutionary spatial PD game, wherein the
interaction graph and replacement (or learning) graph are
separated. They considered three different update rules for
evolutionary dynamics: birth-death, death-birth, and imita-
tion [29]. By both analytical treatment and computer simu-
lations, they found that under death-birth and imitation up-
dating, the optimum population structure for cooperators is
given by maximum overlap between the interaction and the
replacement graph, i.e., whenever the two graphs are identi-
cal [29]. Any existing difference between these two graphs
will benefit defectors. This result holds for weak selection
(which means that the payoffs obtained by the individuals
from the game have a slight contribution to their fitness) and
large population size. The “imitation” updating in [29] is
implemented as follows. A random individual is chosen to
update its strategy; it will either stay with its own strategy or
imitate one of the neighbors’ strategies proportional to its
fitness. In fact, from this point of view, the update mecha-
nism (or evolutionary dynamics) of our model, Eq. (1), can
also be regarded as imitation, where the fitness of each indi-
vidual is determined by an exponential function of its payoff
obtained from the game, ¢V/%. (Whenever updating the state
of the population, one by one the focal individual and a
randomly chosen neighbor from its LN compete for repro-
duction proportional to their fitness according to this func-
tion.) However, we obtain remarkably different result as
compared to [29], i.e., in our model, the difference between
the IN and LN can favor essentially cooperators over defec-
tors (especially for the case of synchronous updating). Since
the evolutionary outcomes are dependent on the updating
rules, and there are many possible updating dynamics on
graphs, we think the detailed evolutionary rules give rise to
this different result in contrast to that of [29]. In addition, in
the present model the fitness of the individuals is closely
related to their payoff, which can be regarded as strong se-
lection, while the result in [29] is obtained in the limit of
weak selection. Thus our present results enrich our knowl-
edge of the evolution of cooperation in the PD game when
the IN and LN are separated.

Since in model II the players possess an inhomogeneous
LN, we would like to investigate the effect of this heteroge-
neity on the players’ strategy selection. In Fig. 4 we display
the typical stationary-state time series of the ratio of the av-
erage learning degrees of cooperators and defectors (calcu-
lated by the total number of neighbors learning of a certain
strategy divided by the total number of the players adopting
this strategy), (Kc)/(Kp), for two special values of r
=0.012 and 0.028 (cooperators and defectors dominate in the
two cases, respectively). The upper LESFN has a decay ex-
ponent y=2.0. We can observe that in the stationary state the
average learning degree of the cooperators is always larger
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FIG. 4. Typical time series of the ratio of average learning de-
gree of cooperators and defectors, (K¢)/(Kp), for two special val-
ues of r=0.012 and 0.028 in the stationary state. The upper LESFN
has a decay exponent y=2.0.

than that of the defectors, which indicates that, the more
learning channels the players possess, the greater is the prob-
ability they would cooperate with others.

Finally, we want to point out the difference between our
results and those of Ref. [18], in which Ifti ef al. studied the
case where the IN and LN are different in the continuous PD
game, and observed that in the lattice topology, when the
neighborhood sizes for interacting and learning differ by
more than 0.5, cooperation cannot persist in the population.
This is not the case for the present studied models wherein
the players are pure strategists. Cooperation can be main-
tained at considerable levels in the cases where the size of
the LN is far larger than that of the IN [see Figs. 1(a) and
1(b) for d=3,4 and Fig. 2], and can go so far as to wipe out
defectors for sufficient small » (homogeneous state C in Figs.
1 and 2). In particular, as long as the strategy updating is
implemented synchronously, cooperation is always promoted
essentially when the IN and LN are different (no matter how
large the LN is) as compared when they are identical.

IV. CONCLUSIONS

In summary, we have explored the influence of the differ-
ence between interaction and learning neighborhoods on the

x
c

PHYSICAL REVIEW E 75, 041114 (2007)

evolution of cooperation. This is done by studying an evolu-
tionary spatial PD game wherein the interaction and learning
graphs of the players are different. The players are placed on
two layered graphs, where the lower layer is the physical
infrastructure on which the interactions are taking place and
the upper layer represents the skeleton where the payoff and
strategy information flow. For the sake of simplicity, we keep
the interaction graph fixed and vary the size of the neighbor-
hood in the learning graph. Two types of models have been
systematically studied: In model I, we simply increase the
size of interaction neighborhood for all the players at the
same level; and in model II, we endow the players with
heterogeneous ability of to obtain information. We per-
formed MC simulations for both models. For model I, we
also use an extended pair approximation to evaluate the av-
erage density of cooperators, p., and make a comparison
with the corresponding results that follow from our MC
simulations.

The main result is that, a difference between the interac-
tion and learning graphs can promote cooperation substan-
tially. The results of this mechanism resemble a coherence-
resonance-like behavior. For model 1 the maximum
enhancement is achieved at d=2, i.e., when the players, in
addition to their nearest neighbors, can also learn from their
next-nearest neighbors; for model II, it is realized at the
middle level of the available information of learning neigh-
bors. Too little learning information favors defection, but ap-
parently so does too much information (especially for asyn-
chronous strategy updating). However, as long as the
strategy updating is implemented synchronously, cooperation
is always promoted essentially when choosing a larger size
of neighborhood in the learning graph. This point is also
verified by the extended version of the pair-approximation
method. In model II, where the players possess heteroge-
neous learning neighborhoods, we found that the more learn-
ing neighbors a player has, the greater the probability it will
cooperate with others. There are few existing works studying
the evolutionary PD game on networks with distinct interac-
tion and learning neighborhoods. Thus our present results
provide a further perspective on understanding the emer-
gence and persistence of cooperation in realistic systems.

In future work, a concise explanation of the mechanism
supporting cooperation should be revealed by more sophisti-
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FIG. 5. (Color online) Illustration of the lower interaction graph (a square lattice) and the central site (fully filled square) with a learning
neighborhood of size d=4 (only those neighbors falling in the first quadrant are shown) (a), and the corresponding schemes used for the pair
approximation with involved sites A, x, y, z, i, j, u, v, w, and B [(b)-(d)]. These schemes are used to determine changes in the pair

configuration probabilities py 3— pp p (b) and p,;— pp; (c) and (d).
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cated analytical methods. Furthermore, it would be interest-
ing to allow the interaction neighborhood and/or the learning
neighborhood to be mutable during the process of the dy-
namics (just as has been done in the case of the continuous
prisoner’s dilemma game [18]), i.e., to study the effects of
annealed and quenched randomness in the interaction and/or
learning partnership for fixed number of coplayers [20].
Work along these lines is in progress.
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APPENDIX: EXTENDED PAIR-APPROXIMATION
METHOD

When the players are pure strategists, an analytical ap-
proximation of the spatial dynamics can be obtained using
the pair approximation (a detailed survey of this technique is
given in the Appendix of the recent review paper [15], and
somewhat brief yet clear versions can be found in the
Supplementary Information of [16] and also in the Appendix
of [17]). Instead of considering the density of strategies as in
well-mixed populations, i.e., in mean-field theory, pair ap-
proximation tracks the densities of strategy pairs. For the
present studied evolutionary PD games, that is to say, we will
first address the probabilities p,. ., p., of finding an indi-
vidual playing strategy C accompanied by a neighbor play-
ing C or D, respectively. Then the density of C is given by
Pc=Dec.c+Deq- For more details, we refer the readers to Refs.
[15-17]. Here we just make extensions to the approach to
study model I, where the interaction and learning graphs are
different. As an example, we will consider the case of d=4
(extensions to other cases are straightforward).

For d=4, each player interacts with its four nearest neigh-
bors on a square lattice, but can learn from those neighbors
with longer (Euclidean) distance up to 4. Since these learn-
ing neighbors satisfy the condition of rotation symmetry, we
will consider only those neighbors falling in the first quad-
rant (see Fig. 5). Whenever a randomly chosen site A updates
its strategy, a neighbor B is randomly selected from its learn-
ing neighborhood as a reference. Their common neighbors

c

Pee= 2 {[nc(x,y,z) +1]h, + [

xyz

DaPc

u,u,w

+nc(x Y, Z)_>/’l2+ |:[n (x v, Z) + 1]<pCC PecPd.d
Pa P PcPa

X 2 pd,upd,vpd,wf(Pd(u5U’W) - PC(X»Y»Z)),

u,uv,w

pd,dpc,c pcc
+ ):|h3}pd,xpd,ypd,z E pc,upc,vpc,wf(Pc(usU»W) - Pd(X,y,Z)) - E {nc(xsyaz)hl + ([n ()C ) Z) + 1] )
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TABLE 1. The probabilities of selecting the nearest neighbors as
references, /1y, the next-nearest neighbors, /,, and the remaining
cases, hs, for different sizes of the learning neighborhood.

hy hy hs
d=1 1 0 0
d=2 1/3 2/3 0
d=3 1/6 1/3 12
d=4* 1/10 1/5 7/10
d— =0 =0 =1

*As an example, the values of hy, hy, hs, for d=4 can be easily
counted out by using the symbolized sites in Fig. 5(a).

(if any) as well as their respective neighbors are considered
to be independent by the pair approximation. Thus, when the
selected reference is its nearest (next-nearest) neighbor, we
will refer to the configuration Fig. 5(b) [Fig. 5(c)]; and for
other cases we will refer to the configuration Fig. 5(d). As-
suming the selected learning neighbor B is A’s third neighbor
(next-next-nearest neighbor), then we will use the scheme
Fig. 5(d) to calculate changes in the pair configuration prob-
abilities p, ;— pp ;-

The payoffs P, and Pz of A and B are determined by
accumulating the payoffs in interactions with their neighbors
x,v,z,i and u,v,w,j, respectively. The pair approximation is
completed by determining the evolution of the pair configu-
ration probabilities, i.e., the probability that the pair p, ; be-
comes pp ;:

PA.i—-B.i = E 2 Ef(PB_PA)

Xyz uvw ij

prpyAp ApA lpl /p/BpquvawB
PAPBP1P1

where the transition probability f(Pz—P,) [see Eq. (1)] is
multiplied by the configuration probability and summed over
all possible configurations. If B succeeds in taking over site
A, the following pair configuration probabilities increase:
Px.B ’py,B »Pz.B>PB,is while the probabilities PxA ’py,A sPzAsPA
decrease. It is easy to analyze the other cases of B (i.e., not
the third neighbor of A), which lead to only a slightly differ-
ent form of Eq. (Al). All these changes result in a set of
ordinary differential equations:

. (AD

2
]h2+{(n (xyz)+l)<p” pcd>+n (xyz)(i

Pa P2 PePa P;

xyz c

Paa Pcd
) + nc(x Vs Z)<_L + ):|h3}pc,xpc,ypc,z

Py PaPc
(A2)
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2 2
pc,c pc,d

Pea= 2 A1 = n(e,y,2) M, + ([1 - nc(x,y,zn‘;j“ +[2- nc.(x,y,z)]%)hz + {[1 - nc<x,y,z>]<—2 + —) +[2=n(x,y,2)]

xyz c

c cFd

2
p R P ,dpc,c E: 2:
: (ﬂ * ; ) :|h3 PaxPd,yPd.; pc,upc,vpc,wf(Pc(u,U,W) - Pd(x’y?z)) - {[2 - nc(x’y’z)]}hl

Py DPaPe

u,v,.w

xyz

2
¥ ([1 - nc(x,y,z)]ij“ +[2- nc<x,y,z>]’;%’d)h2 ¥ [[1 - nc<x,y,z>]<”%‘ " M) +[2-n(xy.2)]
d

c

2 2
Pad  Ped
8 <_ * )]h3 PexPeyPe,: E PaaPawPanf (Pa(ut,0,w) = P(x,y,2)),

Py Pabe

u,v,w

where n.(x,y,z) is the number of cooperators among the
neighbors x,y,z, and P.(x,y,z) and P,(x,y,z) specify the
payoffs of a cooperator (defector) interacting with the neigh-
bors x,y,z plus a defector (cooperator). i, h,, and h; denote
the probabilities of selecting the first, second, and = third
next neighbors as references, respectively (see Table I). For
simplicity, the above two equations omit the common factor

P PcPa

(A3)

2peal (pipfl) which is inessential [17]. In combination with
the symmetry condition p.,=p,. and the constraint p,. .
+pcqtpd,c+py =1, the above equations can be treated ei-
ther by numerical integration or by setting p. .=p.,=0 and
solving for p,..and p.,. Then the equilibrium density of co-
operators is obtained from p.=p. .+p. 4
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